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Popular Summary 

The objective of the investigation is to determine the motion 
of the rotational axis of Mars as a result of mass variations in the 
atmosphere and condensation and sublimation of COz ice on the 
polar caps. 

A planet experiences this type of motion if it has an 
atmosphere, which is changing its mass distribution with respect to 
the solid body of the planet andor it is asymmetrically changing 
the amount of ice at the polar caps. The physical principle involved 
is the conservation of angular momentum, one can get a feeling for 
it by sitting on a well oiled swivel chair holding a rotating wheel on 
a horizontal direction and then changing the rotation axis of the 
wheel to a vertical direction. The person holding the wheel and the 
chair would begin to rotate in opposite direction to the rotation of 
the wheel. 

The motions of Mars’ atmosphere and the ice caps variations 
are obtained from a mathematical model developed at the NASA 
Ames Research Center. The model produces outputs for a time span 
of one Martian year, which is equivalent to 687 Earth days. 

The results indicate that Mars’ axis of rotation moves in a 
spiral with respect to a reference point on the surface of the planet. 
It can move as far away as 35.3 cm from the initial location as a 
result of both mass variations in the atmosphere and asymmetric ice 
variations at the polar caps. Furthermore the pole performs close to 
two revolutions around the reference point during a Martian year. 
This motion is a combination of two motions, one produced by the 
atmospheric mass variations and another due to the variations in 
the ice caps. The motion due to the atmospheric variations is a 
spiral performing about two and a half revolutions around the 
reference point during which the pole can move as far as 40.9 cm. 
The motion due to variations in the ice caps is a spiral performing 
almost three revolutions during which the pole can move as far as 
32.8 cm. 



Abstract. 

The NASA-Ames general circulation model has been used to 
compute time series for atmospheric inertia and relative angular 
momentum terms. Model outputs were used also to compute time 
series representing the inertia terms due to C 0 2  condensation and 
sublimation on the surface of Mars. Some of these terms were used 
to generate time series representing the forcing functions for the 
equatorial components of the linearized Liouville equations of 
rotational motion. These equations were then solved numerically for 
a period of a Martian year (669 sols) to obtain a time series for the 
position of the rotation pole on the surface of Mars. 

The results of the investigation indicate that mass variation in 
the atmosphere is as important as the formation and sublimation of 
ice caps on the surface of the planet. Numerical integration of the 
equations of rotational motion yields pole displacements as large as 
32.8 cm (ice caps solution), 40.9 cm (atmospheric effects), or 35.3 
cm (both effects combined). Fourier analysis of the time series 
corresponding to the equatorial components of pole displacement 
for the ice caps solution as well as the atmospheric effects solution 
shows that the (1/3)-annual harmonic has the largest coefficient in 
three cases, with magnitudes in the 8-10 cm range. Fourier analysis 
of the equatorial components of polar motion for the combined 
solution yields main harmonics of 5.66 cm (x), (1/3)-annual and 
7.86 cm (y), annual. 



1. Introduction. 

The rotational variations of a planet can be analyzed into axial 
and equatorial components. The axial variations (along the z-axis, 
which is the rotation axis) are reflected in changes in the length of 
day (LOD). The equatorial variations (x, y) produce changes in the 
orientation of the axis of rotation (polar motion). The solution of 
Liouville’s equations provides the changes in planetary rotation, Le., 
changes in LOD and polar motion. 

The methodology of planetary rotational investigations can 
follow the angular momentum approach or the torque approach. 
The chosen methodology determines the boundaries of the 
appropriate control volume. The angular momentum method 
involves the computation of terms containing the products of inertia 
of the atmosphere (“mass terms”) and their time derivatives, as well 
as relative angular momentum terms (“motion terms”) and their 
derivatives. 

momentum methodology to compute and analyze how the 
atmosphere affects the equatorial components of the rotation of 
Mars, based on outputs from the NASA Ames General Circulation 
Model (GCM). The model provides values of wind velocity, density 
and pressure, which serve as inputs to the calculation of the terms 
which appear in Liouville’s equations of rotational motion. 

The torque approach was used in a previous investigation by 
Sanchez et al. (2003), referred below as Paper I, to compute polar 
motion and LOD variations. The LOD variations were computed also 
using the angular momentum methodology. Mars’ solid body was 
modeled as rigid, with the Love number k2 = 0. 

constitute a growing body of scientific literature. Paper I provides a 
number of references. Many of these works were concerned only 
with seasonal variations in the rotation rate (LOD). Those which 
computed polar motion variations were concerned with effects due 
to products of inertia produced by condensation and sublimation of 
C02 on Mars’ surface. They are cited below. 

Chao and Rubincam (1990) estimated that a 1” ice cap offset 
from the rotation axis would excite polar motion with amplitude of 
13 milliarcseconds (mas) or a 21-cm polar shift at the surface. 

The objective of this investigation is to use the angular 

The studies of atmospheric effects on the rotation of Mars 
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Yoder and Standish (1997) estimated the spatial orientation of 
the Martian pole of rotation and axial rotation parameters for 
January 1, 1980 (midpoint in the Viking epoch). They used a model 
for the seasonal mass exchange between the ice caps and 
atmosphere to obtain estimates of polar motion due to asymmetric 
ice cap changes. These variations range from 10 to 20 mas at 1, 112, 
and 1/3 year, and 5 mas or less for 1/4 year. The relation between 
amplitude and period is associated with resonance effects caused by 
a wobble period estimated in the 193-212 day range. 

Defraigne et al. (2000) computed Mars' rotational variations 
using the output of a global circulation model for the Martian 
atmosphere developed by Forget et al. (1999). Their polar motion 
results are 11 mas (annual) and 3 mas (semi-annual), which yield a 
displacement similar to that obtained by Chao and Rubincam. 

cm on the surface for both the annual and semiannual polar motion 
excited by the atmosphere and ice caps. 

The NASA Ames GCM is a finite difference model based on the 
primitive equations of meteorology expressed in spherical sigma 
coordinates (a = pressure at height / surface pressure). The 
resolution is 7.5" (latitudinal) by 9" (longitudinal). The version of 
the model used here has 30 vertical layers extending from the 
surface to 100 km. The output files are written every 1.5 hours of 
simulated time, 16 times per sol. There are 10704 records in the 
data file, representing a time span of 669 sols (687 Earth days) 
which is the length of the Martian year. 

Kinetic energy is dissipated in the model by frictional 
interaction with the surface and a "sponge" layer at the model top. 
Surface friction is parameterized using an adaptation of the bulk 
boundary layer scheme of Deardorff (1972). The sponge layer exists 
in the top three layers and is based an a simple Rayleigh friction 
scheme. 

The outputs from the NASA Ames GCM provide a 1.5 hour 
sampling rate, therefore the results for the forcing functions are not 
limited to annual and semi-annual components. 

The model used here for the body of Mars does not include 'a 
liquid core or a solid inner core, therefore associated near-diurnal 
and other possible resonances are excluded. We hope to study them 
in a future work. Mars' solid body is considered as elastic 'with a 
value of the Love number k, = 0.153, as determined by Yoder et al. 

Van den Acker et al. (2002) obtained total amplitudes of 10 
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(2003) from analysis of Mars Global Surveyor radio tracking. Mars’ 
deformation due to attraction and loading by the polar caps has not 
been included. Defraigne et al. (2000) have estimated that these 
effects amount to a few percent of those obtained for the inertia of 
the caps. These rheological effects are functions of Love numbers, 
which are presently subject to uncertainties in their values. These 
effects are of smaller magnitudes than those of effects produced by 
uncertainties in present day atmospheric model parameters. 

series representing various quantities. For each pair of terms, a, 
coskt + b, sinkt = (4’ +b2)112 cos(kt-q), we refer to the quantity (ak2 
+bk2)li2 as the “power at frequency k”. A plot of this quantity as a 
function of k is called the power spectrum, as shown by Hamming 
(1986, page 515). Note that this convention makes the units of 
power the same as those of the particular time series under 
consideration. When reference is made to “total power”, it is meant 
the sum over the entire frequency range. Excitation or forcing 
function magnitudes are given in Hadley units. One Hadley (H) is 
equal to 10’ Newton-meters. 

The structure of the paper is as follows. The Liouville 
equations of rotational motion are introduced in Section 2. Time 
series and analysis of the equatorial excitation functions are treated 
in Section 3. The computation of polar motion constitutes the 
subject of Section 4. Summary and conclusions appear in Section 5.  

The paper presents the results of Fourier analysis of time 

2.  Liouville Equations. 

Liouville gave the basic equations of motion in 1858. A 
linearized form of the equatorial components is given below. 

A (03’ + (C - B) SZ O, = - ( h, - Q Cz )’ + Q ( h, - SZ Iyz ) + L, 
(1) 

B ( o , ) ’ - ( C - A ) S Z O , = - ( ~ , - S Z ~ , ) ’ - Q  ( h , - Q I , , ) + L ,  

Where A and B are the equatorial moments of inertia, C is the polar 
moment of inertia, Iyz and I,, are the products of inertia, h, and h,, 
are the relative angular momentum terms. Q is the mean angular 
speed of rotation, ox and o, are the equatorial components of 
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angular velocity. L, and L, are the equatorial components of external 
torque. The primes denote derivatives with respect to time. 

The time varying parts of the products of inertia can be 
separated into three components. A part due to the rotational 
deformation of the solid body of the planet. A part due to CO, and 
H20  ices condensing and sublimating on the surface of the planet, 
and a part due to mass redistribution in the atmosphere. The 
expressions for the products of inertia can then be written as 
follows, 

The first term in equations (2) is the rotational deformation 
part. The second term denotes the atmospheric part. The 
contribution due to surface ice is indicated by the third term. With 
respect to the rotational expression, k2 is the second-degree tidal 
effective Love number, R is the radius of the planet, and G is the 
gravitational constant. 
Substitution of equations (2) into equations (1) and solving for 0, 

and my yields, 

Y’ - N Y = F a  + F, + L (3) 

Fa = Fax 9 Fay IT 

Fay = - ( hy - SL AIyz )’ - Q ( h, - 52 AIxz ) 

Fsx = Q AI=’ - Q2 AIyz 
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F,, = Q AIyz’ + Q2 AIxz 

L =  [L, ’ L,lT 

c1 = A + k, R5 Q2/(3 G) 

c2 = B + k2 R5 Q2/(3 G) 

d1 = Q [ (C - B) - k2 Rs Q2/(3 G) 3 

d, = SZ [ (C - A) - k2 Rs Q2/(3 G) ] (14) 

where the superscript “T” denotes transposed. 

point of intersection of the axis of rotation with the surface of the 
planet by the well - known relations 

The solution of equation (3) provides the trajectory of the 

x = (o@) R 

The value of the polar moment of inertia C used in the 
calculations was obtained from, 

C = 0.366 M R2 (16) 

Where M = 6.4185 x kg and R = 3389920 m. The values of 
the equatorial moments of inertia A and B follow from the values of 
the gravitational coefficients Go and C2,  and the value of C, 

A = M R2 (C20 + 0.366 - 2. C2,) 

B = M R2 (Go + 0.366 + 2. C2.3 

The values for the gravitational 
Lemoine et al. (2001). 

By setting the forcing functions 
the eigenvalues of matrix N yield the 
oscillation, 

( 1 7 )  

( 1 8 )  

coefficients are those given by 

equal to zero in equation (3), 
associated free period of 
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P = 2 Tc/[(dI d2)/(c1 c,)]”~ 

Letting A = 2.68594 kg-m2, B = 2.68433 kg-m2, C = 
2.69956 
following values for the Martian Chandler period are obtained, as 
shown in Table 1 below. 

It is seen that triaxiality, with B < A, decreases the Chandler 
period by 10 days for a rigid Mars, for an elastic Mars, the reduction 
is 14 days. Elasticity increases the Chandler period, 29 days for an 
equatorial symmetric Mars, 25 days for a triaxial Mars. 

kg-m2, and k2 = 0.153 (Yoder et al., 2003), the 

3 .  Excitation functions. 

The condensation and sublimation of C 0 2  on the surface and 
in the atmosphere of Mars produce changes in the atmospheric 
mass distribution as well as changes in the polar caps. From the 
standpoint or rotational dynamics these changes are manifested in 
time variations in the moments and products of inertia. Another 
source of rotational variations is due to the atmospheric winds, 
which contribute to the relative angular momentum terms. 

Figure 1 exhibits the time series for mass variation in the 
atmosphere and the ice caps. Note that they are negatives of each 
other, which indicates mass conservation is satisfied. The 
atmospheric variation occurs with respect to a mean value of 236 
( 1 014) kg, the ice mass variation has a mean of 35 (1014) kg. Total 
power is 39 (1014) kg for each series. Main harmonics are annual, 
semiannual, (1/3)-annual, and (1/4)-annual. 

are computed from the following expressions, 
The products of inertia and relative angular momentum terms 

Ixz = p r2 sin$ cos@ cosh dV 

Iyz = Iv p r2 sin@ cos@ sink dV 

h, = p r ( v sinh - u sin@ cosh ) dV 

h, = Iv p r ( - v cosh - u sin@ sinh)  dV 
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where p is the atmospheric density, r is the distance from the center 
of planet, $ is latitude, h is east longitude, u is the eastward velocity 
component, v is the northward velocity component, and V stands 
for the volume of the atmosphere. 

angular momentum terms (hx, 4) as well as time derivatives of the 
products of inertia I,, and Iyx appear in the linearized Liouville 
equations (Eq. 1). The following difference approximation formulas, 

,, as given by Greenspan (1974), have been used to compute the first 
derivatives. For the first point in the time series, 

Terms involving time derivatives of the equatorial relative 

For the interior points, 

The variable “q” in Equations 24 - 26 above denotes either 
relative angular momentum or product of inertia, “t” is time, and 
“h” is the time step in the series, specifically h = (1/16) of a Martian 
day. Primes signify time derivatives. 

The amplitudes of products of inertia, relative angular 
momentum, and corresponding time derivatives range over several 
orders of magnitude. However these terms appear in the equations 
of motion multiplied by Q raised to various powers, therefore they 
all have to be considered in combinations referred to as excitation 
or forcing functions. 

show forcing functions on the right side due to atmospheric wind 
and mass changes and to ice formation and sublimation. If the 
angular momentum approach is taken, these forcing functions will 
drive the forced solution and no torque due to the atmosphere will 
appear in the control volume. Equations (7) and (9) give the 
atmospheric and ice contributions respectively. 

the equatorial components of the atmospheric forcing functions. 

The linearized Liouville equations, in the form of Equation (3), 

Figures 2 and 3 present the time series and power spectra for 



Figures 4 and 5 portray the results for the ice caps excitation 
functions. Tabulated results based on power spectrum analysis are 
given in Table 2. Note that the main harmonics for the ice caps 
excitation functions are all long periodic: annual, semiannual, (113)- 
annual, etc. The excitation functions based on atmospheric effects 
exhibit daily and sub-daily harmonics among the five most 
powerful. Figures 6 and 7 show time series and power spectra for 
the equatorial components corresponding to the sum of ice caps and 
atmospheric effects. Tabulated results appear in Table 3. As 
expected, annual, semiannual, (1/3)-annual, daily and sub-daily 
harmonics rank among the most powerful. The long period 
harmonics are associated with seasonal effects, involving the 
revolution of Mars around the Sun and the inclination of its rotation 
axis with respect to the plane of the orbit. Daily and sub-daily 
periods are associated with the daily rotational motion and with 
variations in the products of inertia, which correspond to tesseral 
'geographic mass variations, and with variations in the relative 
angular momentum terms. 

condensation and sublimation reaches its maximum (2.36 H) at the 
end of the northern hemisphere summer (320 sols). This is 
approximately the time when total mass variations reach a 
maximum in the ice caps and in the atmosphere (313 sols). The 
forcing magnitude associated with atmospheric effects reaches its 
maximum (7.29 H) at the very end of the fall (505 sols), coincident 
with the maximum variation in atmospheric products of inertia: AI,, 
(505 sols) and AIyz (507 sols). The combined effect (ice plus 
atmosphere) reaches a maximum of 7.26 H at 505 sols. 

The magnitude = (x2 + y2) of forcing due to ice caps 

4 .  Computation of polar motion. 

The trajectory of the point of intersection of the rotation axis 
with the surface of Mars is obtained from equations (15), which 
require the solution of equation (3). The solution was obtained by 
means of a numerical integration package using the Runge-Kutta- 
Fehlberg (4,5) method with step size control. 

Equation (3) was solved separately for effects due to ice 
condensation and sublimation on the surface of the planet and for 



< 

effects due to mass redistribution in the atmosphere. The total effect 
is obtained by addition, due to the linearity of the equations. 

corresponding to the equatorial components of pole displacement 
for the ice caps solution as well as the atmospheric effects solution. 
The (1/3)-annual harmonic has the largest coefficient in three cases, 
with magnitudes in the 8-10 cm range. The coefficients of the main 
harmonics are of similar magnitude for the ice caps and for the 
atmospheric effects. 

displacement as components of a vector characterized by magnitude 
= (x2 + y2) 
and phase, as well as power spectrum results for the polar 
displacement due to atmospheric variations are shown in Figure 8. 
Corresponding results for ice condensation and sublimation appear 
in ,Figure 9. Results for the combination of both are given in Figures 
10 - 12. 

548 sols. Atmospheric effects yield a maximum of 40.9 cm at 478 
sols. The combined effect has a maximum of 35.3 cm at 616 sols. 

The phase angle time series for the solution due to ice 
condensation and sublimation indicates a spiral motion performing 
three revolutions about the origin. The solution based on 
atmospheric mass variations and the combined solution both 
portray a spiral motion performing two revolutions during the 
Martian year. 

Table 3 lists the main harmonics for the x and y components 
of the combined solution. Compare with the main harmonics 
associated with the forcing functions, which appear in Table 3 also. 
Note the (1/3)-annual harmonic, which is magnified by the 
proximity of its period (223 sols) to the natural period of 211 sols. 
The daily and sub-daily harmonics appearing in the forcing 
functions are not very powerful in the pole displacement spectra. 

Table 4 presents power spectrum results for the time series 
associated with the magnitude of the displacement of the pole, (x2 + 
y2) 'I2, corresponding to the solution due to ice caps variations, the 
solution based on atmospheric variations, and the combined 
solution based on ice caps and atmospheric variations. 

Table 2 presents Fourier analysis results for the time series 

It is possible to consider the (x, y) components of the polar 

and phase = arctan (y/x). Time series of magnitude 

The maximum displacement due to ice is 32.8 cm, occurring at 
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5.  Summary and conclusions. 

The NASA-Ames general circulation model has been used to 
compute time series for atmospheric inertia and relative angular 
momentum terms. Model outputs were used also to compute time 
series representing the inertia terms due to CO, condensation and 
sublimation on the surface of Mars. Some of these terms were used 
to generate time series representing the forcing functions for ’the 
equatorial components of the linearized Liouville equations of 
rotational motion. These equations were then solved numerically to 
obtain a time series for the position of the rotation pole on the 
surface of Mars. 

The amount of atmospheric mass involved in condensation 
and sublimation is equal to 16.52% of the total atmospheric mass. 

The annual, semiannual and (1/3)-annual harmonics appear 
among the five most powerful in the equatorial power spectra for 
both the ice caps and atmospheric effects, daily and sub-daily 
harmonics are also prominent in the atmospheric forcing but not in 
the ice caps forcing. 

The results of the investigation indicate that mass variation in 
the atmosphere is as important as the formation and sublimation of 
ice caps on the surface of the planet. Numerical integration of the 
equations of rotational motion yields pole displacements as large as 
32.8 cm (ice caps solution), 40.9 cm (atmospheric effects), or 35.3 
cm (both effects combined). Fourier analysis of the equatorial 
components of polar motion for the combined solution yields main 
harmonics of 5.66 cm (x), (1/3)-annual and 7.86 cm (y), annual. 

The Mars’ model used in the investigation corresponds to a tri- 
axial, elastic solid body without a fluid core. For the adopted 
parameter values, the associated natural or Chandler period is 211.6 
sols. When forced by ice caps and atmospheric variations the 
response of the model is a function of the separation between the 
forcing frequency and the natural frequency. Consequently, the 
(113)-annual harmonic of the forcing is magnified in the spectra 
corresponding to the equatorial components of polar motion. 
Inversely, the daily and sub-daily harmonics of forcing are 
minimized. However, if an ellipsoidal fluid core were incorporated 
in the Mars’ model, a near-diurnal natural frequency would appear 
which might magnify the response to the daily and sub-daily 
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harmonics present in the forcing functions. Additional resonances 
might appear if a solid inner core is introduced in the model. 

The methodology of planetary rotational investigations can 
follow the angular momentum approach or the torque approach. 
The torque approach was used in Paper I to compute polar motion 
and LOD variations although no ice caps effects were included in the 
polar motion calculation. Discrepancies between the two approaches 
have previously appeared in investigations concerned with 
atmospheric effects on the rotation of the Earth and Mars. In theory 
the results from the torque approach and the results from the 
angular momentum approach should be identical. It is possible that 
the spatial grids used in the models are not sufficiently fine to 
achieve the necessary numerical accuracy conducive to a 
convergence of results for the two methodologies. Some authors 
have expressed their preference for the angular momentum 
approach, i.e., Defraigne et al. (2000). At the present time the 
quan€ity and quality of Mars’ rotational data is not sufficient to 
ascertain which methodology is producing more realistic results. 
However, the amplitudes of the main harmonics as obtained in this 
investigation are certainly within the range of detection of future 
geodetic missions to Mars, such as the planned and postponed 
NetLander Ionospheric and Geodesic Experiment (NEIGE). 

atmospheric models to be expected as more and better data 
becomes available, as well as from more realistic models of Mars’ 
inner structure. 

Future investigations will benefit from the refinement of the 
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Table 1.  Chandler period as function of triaxiality and elasticity. 
A = 2.68594 
( 1 036) kg-m2. Chandler period in sols. 

kg-m2, B = 2.68433 kg-m2, C = 2.69956 

Moments of Inertia 

A, A, c 
A, B, c 
A, A, c 
A, €3, C 

k, Chandler Period 

0. 196.8 
0. 186.1 
0.153 225.4 
0.153 21 1.6 
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Table 2. Main harmonics of forcing functions and equatorial polar 
motion displacements due to ice caps and atmospheric variations. 
Frequency in cycles per year. Amplitudes of forcing functions in 
Hadleys. Amplitudes of polar motion displacements in cm. 

Forcing Function 

Frequency Amplitude 

X - comDonent 

Pole Displacement ' 

Frequency Amplitude 

1 
2 

0.70 3 19.56 
0.41 1 14.35 

3 10.15 12 12.29 

1 
669 

5 

1.83  3 8.03 
0.57 1 4.45 

10.07 14 12.13 
668 
670 

4 10.05 15 11.66 

0.20 2 4.12 
0.19 4 2.61 

Atmospheric Variations 

Forcing Function 

Frequency Amplitude 

Forcing Function I Pole Displacement 

Pole Displacement 

Frequency Amplitude 

Frequency I Amplitude I Frequency I Amplitude 

Forcing Function 

Frequency Amplitude 

Pole Displacement . 

Frequency Amplitude 

1 
2 

3 10.18 15 10.96 

0.73 3 9 .0s  
0.14 2 4.32 

1 
669 

0.55 1 9.89 
0.49 3 6.98 

3 
5 
6 10.03 15 11.12 

0.07 1 3.17 
0.04 4 1.63 

2 
67 1 

0.26 4 2.89 
0.16 2 2.32 

667 10.15 I S  11.30 
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Table 3. Main harmonics of the excitation function due to ice and 
atmospheric variations combined and associated pole displacement. 
Frequency in cycles per year. Forcing function amplitude in 
Hadleys. Pole displacement amplitude in cm. 

~~~~ ~~ 

Frequency 
3 
1 
2 
4 

X - component 

Amplitude 
5.66 
3.86 
3.40 
2.43 

Forcing Function 

Frequency I Amplitude 

669 
2 

1 11.74 

0.49 
0.31 

1 
0.20 

6 7 1  
667 

Pole Displacement 

0.16 4 2.48 
0.15 5 1.53 

. -  

Y - comDonent 
Forcing Function I Pole Displacement 

Frequency I Amplitude Freauencv I AmDlitude 
1 10.89 I 1  17.86 

3 16.25 
12.77 
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Table 4. Main harmonics of polar motion displacement (d x2 + y2). 
Solution based on ice caps variations. Solution based on 
atmospheric variations. Solution based on ice caps and atmospheric 
variations combined. Frequency in cycles per year. Amplitude in cm. 

Ice Caps Variations Atmospheric Variations Combined Solution 
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Figure Captions. 

Figure 1. Mass variation time series. 
b) Atmosphere. 
c) Ice. 

Figure 2. Atmospheric variation forcing function. X - component. 
Amplitude in Hadleys. One Hadley is equal to lo1* Newton-meters. 
a) Time series. 
b) Power Spectrum. 

Figure 3. Atmospheric variation forcing function. Y - component. 
a) Time series. 
b) Power Spectrum. 

Figure 4. Ice caps variation forcing function. X - component. 
a) Time series. 
b) Power Spectrum. 

Figure 5. Ice caps variation forcing function. Y - component. 
a) Time series. 
b) Power Spectrum. 

Figure 6 .  Atmospheric variation plus ice caps variation forcing 
function. X - component. 
a) Time series. 
b) Power Spectrum. 

Figure 7. Atmospheric variation plus ice caps variation forcing 
function. Y - component. 
a) Time series. 
b) Power Spectrum. 

Figure 8. Polar motion due to atmospheric variations. 
a) Displacement = (x2 + y2) 
b) Phase = arctan (y/x). 
c) Power Spectrum. 
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Figure 9. Polar motion due to ice caps variation. 
a) Displacement = (x2 + y2) lI2.  

b) Phase = arctan (y/x). 
c) Power Spectrum. 

Figure 10. Polar motion due to atmospheric and ice caps variations 
combined. X - component. 
a) Amplitude. 
b) Power Spectrum. 

Figure 11. Polar motion due to atmospheric and ice caps variations 
combined. Y - component. 
a) Amplitude. 
b) Power Spectrum. 

Figure 12. Polar motion due to atmospheric and ice caps variations 
combined. 
a) Displacement = (x2 + y2) 
b) Phase = arctan (y/x). 
c) Power Spectrum. 
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